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Purpose: Recent reports indicate that model-based iterative reconstruction methods may improve
image quality in computed tomography (CT). One difficulty with these methods is the number of
options available to implement them, including the selection of the forward projection model and the
penalty term. Currently, the literature is fairly scarce in terms of guidance regarding this selection
step, whereas these options impact image quality. Here, the authors investigate the merits of three
forward projection models that rely on linear interpolation: the distance-driven method, Joseph’s
method, and the bilinear method. The authors’ selection is motivated by three factors: (1) in CT, linear
interpolation is often seen as a suitable trade-off between discretization errors and computational cost,
(2) the first two methods are popular with manufacturers, and (3) the third method enables assessing
the importance of a key assumption in the other methods.
Methods: One approach to evaluate forward projection models is to inspect their effect on discretized
images, as well as the effect of their transpose on data sets, but significance of such studies is unclear
since the matrix and its transpose are always jointly used in iterative reconstruction. Another approach
is to investigate the models in the context they are used, i.e., together with statistical weights and a
penalty term. Unfortunately, this approach requires the selection of a preferred objective function and
does not provide clear information on features that are intrinsic to the model. The authors adopted
the following two-stage methodology. First, the authors analyze images that progressively include
components of the singular value decomposition of the model in a reconstructed image without
statistical weights and penalty term. Next, the authors examine the impact of weights and penalty
on observed differences.
Results: Image quality metrics were investigated for 16 different fan-beam imaging scenarios that
enabled probing various aspects of all models. The metrics include a surrogate for computational
cost, as well as bias, noise, and an estimation task, all at matched resolution. The analysis revealed
fundamental differences in terms of both bias and noise. Task-based assessment appears to be
required to appreciate the differences in noise; the estimation task the authors selected showed
that these differences balance out to yield similar performance. Some scenarios highlighted merits
for the distance-driven method in terms of bias but with an increase in computational cost. Three
combinations of statistical weights and penalty term showed that the observed differences remain the
same, but strong edge-preserving penalty can dramatically reduce the magnitude of these differences.
Conclusions: In many scenarios, Joseph’s method seems to offer an interesting compromise between
cost and computational effort. The distance-driven method offers the possibility to reduce bias but
with an increase in computational cost. The bilinear method indicated that a key assumption in the
other two methods is highly robust. Last, strong edge-preserving penalty can act as a compensator
for insufficiencies in the forward projection model, bringing all models to similar levels in the
most challenging imaging scenarios. Also, the authors find that their evaluation methodology helps
appreciating how model, statistical weights, and penalty term interplay together. C 2016 American
Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4966134]
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1. INTRODUCTION

Nonlinear iterative reconstruction methods have become a
topic of active research in x-ray computed tomography (CT).
This effort is motivated by increasing evidence that such
methods may enable improvements in image quality at equal
dose or savings in radiation dose at equal image quality.
See, e.g., the clinical studies in Refs. 1–7. Unlike classical
filtered backprojection, iterative reconstruction methods allow
including additional information in the reconstruction process,
such as photon statistics for the measurements (Ref. 8, Chap-
ter 2), physical properties of the x-ray beam,9–11 and image
constraints.12 These advantages all contribute to the observed
improvements in the image quality.

Multidirectional investigations are required to gain the
most out of nonlinear iterative reconstruction methods. One
direction is the development of efficient algorithms for
routine clinical CT scans. For this effort, the image is
usually defined as the solution of a penalized weighted
least-square model.13–16 Given that computer resources are
naturally limited, the final image is always defined as the
result of a finite number of iterations. However, the iterations
may either be converging or semiconverging. Examples of
popular optimization algorithms with converging iterations
include the iterative coordinate descent (ICD) method12,17–21

and accelerated gradient-descent methods.22–25 Converging
iterations are attractive in that they can provide solutions
of arbitrary accuracy relative to the targeted image (i.e., the
solution of the selected optimization problem), but many
iterations may be needed, which complicates utilization when
fast patient throughput is needed. Examples of algorithms with
semiconverging iterations include IFBP,26 ordered subsets
methods,27–30 and accelerated versions of ordered subset
methods.31–33 The hope with semiconverging iterations is to
obtain, with a relatively small number of iterations and before
divergence happens, a good approximation to the targeted
image. Intrinsic to the development of all algorithms is the
need for a fast implementation, using either CPU or GPU
depending on the specifics of the algorithm.34–41

Two other directions where progress is being made is recon-
struction from limited data using total variation minimization
and reconstruction from dual energy scans. Total variation
has been shown to enable robust reconstructions from few
projections (see, e.g., Ref. 42 and references therein), which,
in CT, can be particularly useful for dynamic imaging.43 Total
variation has also been shown to be a useful constraint in
interior tomography.44,45 Interesting contributions on itera-
tive reconstruction in dual energy CT include those from
Refs. 46–52.

Another important direction of research is the quantitative
analysis of image quality dependence on numerous factors
involved in the reconstruction process. Our contribution here
belongs to this category. The literature on this direction of
research is currently relatively scarce, so that our contribution
helps filling an important gap in knowledge. Given that
nonlinear iterative reconstruction methods come with an
incredibly large number of degrees of freedom, the analysis
is particularly challenging. The list of factors starts with the

selection of the objective function that defines the final image,
then quickly expands to encompass a variety of parameters
appearing in this function along with the forward projection
model. Investigations in this direction are further complicated
by the need to perform several reconstructions to account for
different noise realizations and variations in geometry, which
is essential for meaningful observations. One way to mitigate
this difficulty is to focus on 2D rather than 3D reconstruction,
with the hope that the acquired knowledge extends to 3D, at
least partly.

In this paper, we investigate the impact of the forward
projection model on image quality. Even though we only
investigate this one factor, choices had to be made since the
list of suggested forward projection models is fairly long;
see, e.g., Refs. 53–65 for 2D and 3D examples. We decided
to focus the study on the following three forward projection
models in 2D fan-beam CT geometry: Joseph’s method,53

the distance-driven method,60 and the bilinear method.66 A
first reason motivating this selection is the fact that all
three methods are based on linear interpolation, which is
typically seen as a suitable trade-off between discretization
errors and computational effort for image reconstruction in
diagnostic CT. Algorithms that rely on nearest neighbor
interpolation, such as the popular method of Siddon,54 tend
to lack robustness for utilization in diagnostic CT, unless
countermeasures are taken.67 Second, all three methods are
such that they can be easily extended to 3D CT geometries,
as shown in Refs. 58, 64, and 68. Third, these methods are
popular with manufacturers, particularly the first two, which
seem to be used in clinical products. Fourth, knowledge on
the behavior of these important methods is currently fairly
limited for diagnostic CT geometries; see Refs. 64, 68, and
69. See also Ref. 70 for a complementary study on the effect
of forward projection models for few view tomography with
total variation regularization.

Investigating the impact of forward projection models on
image quality is not straightforward. A critical question was
to decide if the models should be investigated on their own
or in the context of iterative CT reconstruction with a specific
objective function that includes typical ingredients such as
statistical weights and a penalty term. We selected the former
option, as we felt that a primary goal should be to first
understand what the model can offer on its own. The impact
of statistical weights and penalty terms may then be easier to
understand in a second stage of investigations. One approach
to investigate the value of the models on their own would be
to use the singular value decomposition. Such an approach
would provide a complete picture in terms of recoverable
features and associated stability, but this picture may be too
rich to fully comprehend. We settled down for an intermediate
approach that progressively injects components of the singular
value decomposition in a reconstructed image and relies on
classical image quality metrics.

The paper is organized as follows. First, the scanner
geometry chosen for comparison is described in Sec. 2,
along with a brief description of the three forward projection
models, as well as a short discussion highlighting funda-
mental differences between them. Next, Sec. 3 explains the
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experimental comparison conditions, including the image
formation process, geometrical settings, and the phantom used
for testing. This section is followed by Sec. 4, which gives a
detailed description of basic and task-based metrics used for
quantitative comparison, and by Sec. 5, which presents and
discusses the results obtained with these metrics. Next, in
Sec. 6, we examine examples of image reconstruction with
statistical weights and penalty terms. Finally, a summary
discussion and conclusions are given in Sec. 7.

2. BACKGROUND

We start with a description of the 2D fan-beam data
acquisition geometry used for our investigation. Next, a
brief review of the three linear interpolation models under
comparison is given. This review is followed by a comparative
discussion of key features of these models.

2.A. Fan-beam geometry

The geometry of a 3rd generation CT scanner with a curved
detector is used for data simulation, as shown in Fig. 1. In this
geometry, the x-ray source rotates synchronously with the
detector around a fixed center, thereby generating fan-beam
data.

Let λ be the polar angle measured relatively to the x-axis,
and let eu(λ)= [−sin(λ),cos(λ)]T and ew(λ)= [cos(λ),sin(λ)]T
be two orthogonal unit vectors, where the superscript T de-
notes the transpose operator. Then, the circular scanning path
is defined as

a(λ)= R0 ew(λ)+δ(λ) eu(λ) with λ ∈ [λs,λe), (1)

where R0 is the scan radius, i.e, the distance from the source
to the rotation center, λs is the start angle, λe is the end angle,
and δ(λ) accounts for a possible flying focal spot (FFS) feature
during data acquisition.

When δ(λ)= 0, the distance from the source, a(λ), to any
point on the detector is D. Each point on the detector is

F. 1. Fan-beam geometry. Angle λ specifies the source position. The
measurements at any given source position are identified using either γ or
u, with u =Dγ.

F. 2. Parallel-beam parametrization: line L(θ, s) represents the same mea-
surement as L(λ,γ) in Fig. 1.

identified using a curvilinear coordinate u that is positively
measured on the detector in the direction of eu(λ). The origin
u = 0 coincides with the line that connects the source to the
rotation center; this line is in the direction of −ew(λ). Let
L(λ,u) be the ray that starts from a(λ) and goes toward the
position u on the detector. The measurement along L(λ,u) is
denoted g(λ,u), and the angle between L(λ,u) and the line
that connects a(λ) to the rotation center is called γ. Angle γ
is measured positively in the counter-clockwise rotation, as
shown in Fig. 1, so that u=Dγ.

The CT measurements are also identified using parallel-
beam coordinates, as shown in Fig. 2. In these coordinates,
each ray is described by an angle θ and a signed distance s.
Vector θ⊥= (−sinθ, cosθ) gives the direction of the ray, from
source to detector, and s expresses how far the ray is from the
origin in the direction of θ = (cosθ, sinθ). The link between
(θ,s) and (λ,γ) is

θ = λ+π/2−γ, s = R0 sin γ. (2)

The scanned object is inside a disk centered on the origin
within the region delimited by the source trajectory. This disk
is called the field-of-view (FOV) and its radius is rFOV < R0.
Points within the FOV are identified by Cartesian coordinates,
x and y . Reconstruction is performed on a finite set of points
called (xk,yl), where k and l are indices. These points are
uniformly distributed in x and y . Throughout the paper, the
same sampling distance is used in both x and y . This distance
is denoted as ∆, so that xk = k ∆ and yl = l ∆. The number
of samples in x is Nx and that in y is Ny. A square pixel of
width ∆ can be associated with each point (xk,yl); this pixel is
centered on (xk,yl). The samples obtained by varying k while
keeping l fixed are said to form a row of samples. Similarly,
the samples obtained by varying l while keeping k fixed form
a column of samples.

Finally, the linear attenuation of x-rays is denoted as
f (x,y). Subsections 2.B–2.D present the link between
f (xk,yl) and the CT measurements for the three linear
interpolation models that we compare.

2.B. Joseph’s Method

The method of Joseph models each measurement as a
straight line integral and approximates the integral along each
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F. 3. Geometrical description of Joseph’s method for L(λ,u) more parallel
to the y-axis than the x-axis, i.e., for |cosθ | > 1/

√
2. The measurement along

such a line is created with linear interpolation in x and summation in y.

line either as a summation in x or in y depending on the
direction of the line. This concept allows all computations to
be done using a simple 1D interpolation. When the summation
is in x (alternatively y), the interpolation is in y (respectively,
x). Linear interpolation is used, and the summation direction
is chosen according to angle θ in Eq. (2). When |cosθ | > 1/

√
2,

the line is more parallel to the y-axis than the x-axis and the
summation is in y; otherwise, it is in x.

Figure 3 illustrates the concept for a case where the
summation is in y . For each l, there is an intersection between
L(λ,u) and the line of coordinate yl, and there is an index k(l)
such that this intersection is between xk(l) and xk(l)+1 in x. Let
wl be the distance in x between the intersection and xk(l). Then,
the underlying formula for Joseph’s method can be expressed
as

g(λ,u) ≃ ∆

|cosθ |
·

l


∆−wl

∆
f (xk(l),yl)+ wl

∆
f (xk(l)+1,yl)


. (3)

This formula is applied with f (xk(l),yl)= 0 whenever xk(l)
is outside the range of available samples and the same for
f (xk(l)+1,yl). The scaling factor in front of the summation is
the Jacobian that accounts for the summation being performed
in y instead of along the line.

The formula for the case where the summation is in x
instead of y is very similar to Eq. (3). Basically, the summation
is in k instead of l, l becomes an index depending on k, wl is
transformed into a distance, hk, in y , and the scaling factor in
front of the summation becomes ∆/|sinθ |.

An important aspect in our description of Joseph’s method
is that the direction of summation may change within any
given projection. An alternative would be to use the same
direction of summation for all rays within the view. Since
Joseph’s method was truly only described for parallel-beam
data, there is no consensus on what Joseph’s method is for fan-
beam data. Intuitively, a better accuracy may be expected if the

direction of summation is individually selected for each ray,
particularly for geometries with a high magnification factor.

2.C. Distance-driven method

The distance-driven method is very similar to Joseph’s
method except for the key aspect that it accounts for the
finite size of the detector pixel. As in Joseph’s method, each
measurement is created using a summation in x or y , but the
summation direction is the same for all rays that are within a
same view. If |sinλ | > 1/

√
2, the summation is in y; otherwise,

it is in x. Once a summation direction has been chosen, say in
y , the finite size of the detector pixel is accounted for using
integration over the projected length of the detector pixel on
each row of samples. If the summation direction was in x,
the projected length would be identified on the columns of
samples.

Figure 4 illustrates the concept for a case where the
summation is in y . To create the measurement associated
with a given detector pixel, we start by drawing the two
lines that connect the source position with the edges of the
detector pixel. For each l, these two lines intersect the line of
coordinate yl at two locations in x, called q1(l) and q2(l), with
q1(l)< q2(l). These two locations define the projected length of
the detector pixel over which integration is to be carried out.
This integration is performed in x using a nearest-neighbor
interpolation model for representation of f (x,yl). The result
is

g(λ,u)≃ ∆

|cosθ |

l





k

dk,l

q2(l)−q1(l) f (xk,yl)


, (4)

where dk,l is the length of the overlap between the interval
[q1(l),q2(l)] and the interval [xk −∆/2,xk +∆/2]. If there is
no overlap, then dk,l = 0. The scaling factor in front of the
summation in l is the same as in Joseph’s method and has
the same meaning. By definition, the summation over k in

F. 4. Geometrical description of the distance-driven method in the case
where |sin(λ)| > |cos(λ)|. (left) The measurement is created using summation
in y with the contribution at each row position defined using integration over
the projected length of the detector pixel, indicated as [q1,q2]. (right) The
number of samples along the row that is involved in the integration varies
with ∆, as well as q1 and q2. The upper drawing shows a zoomed view
for a situation where two samples are involved, whereas three samplings are
involved in the lower drawing.
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Eq. (4) only involves a few terms, but the exact number of
terms depends on ∆ as well as on l, λ, u, and the detector
pixel size. The drawings on the right side in Fig. 4 show how
the number of terms may vary with the sampling in x for our
particular example.

From an implementation viewpoint, a preferred approach
for the distance-driven method may be to perform the
computations for all u values at once for each λ and each
l, instead of summing on l before looping on the u values.
Such an approach offers advantages in terms of cache memory
usage, since values close to each other in memory can be used
at the same time. The same concept can also be used for
Joseph’s method.

2.D. Bilinear method

Like in Joseph’s method, the bilinear method models each
measurement as a straight line integral. However, it does
not require the selection of a preferred Cartesian direction,
which maybe better for some rays. The concept is as follows:
(i) use bilinear interpolation to estimate the value of f at
every position along the measurement line and (ii) integrate
the estimated values. The bilinear method was introduced
by Kak and Slaney (Ref. 66, Section 7.4) who suggested
an approximate implementation: bilinear interpolation to get
f at a finite number of points along the line, followed by
summation. To our knowledge, the bilinear method was never
tested without approximation.

The parameters in the bilinear method are again the values
of f at positions (xk,yl). For convenience, these values are
denoted here as ckl. Let

b1(t)=



1− |t |, if |t | < 1
0, otherwise

(5)

be the B-spline of order 1 and let b(x,y)= b1(x) b1(y). From
b(x,y), we can write the estimate fa(x,y) of f (x,y) that results
from bilinear interpolation as

fa(x,y)=

k,l

ckl ·b
( x− xk

∆
,
y− yl
∆

)
. (6)

Using this equation for fa with the parallel-beam coordinates
of Eq. (2), each line integral can be estimated as

g(λ,u)≃

k,l

ckl ·r (θ,(s− xkcosθ− yl sinθ)/∆). (7)

Equation (7) was used to implement the bilinear method with
no approximation using the expression for r(θ,s) below. See
Fig. 5 (left) for an illustration.

Conceptually, r(θ,s) is the Radon transform of b(x,y).
From Ref. 59, this transform can be expressed as

r(θ,s)=
2

i=0

2
j=0

(−1)i+ j
(

2
i

) (
2
j

)

·
[s+ (1− i) · h1(θ)+ (1− j) · h2(θ)]3+

(3)!(h1(θ) h2(θ))2 , (8)

where the one-sided power function [x]3+ is defined as

F. 5. (left) Illustration of the bilinear method: the line is split into segments,
each of which falls between four samples; these samples are used with
bilinear interpolation to get the function at every location on the segment;
then the results from all segments are integrated. (right) Comparison of
samples used by Joseph’s method (gray dots) and the bilinear method (gray
and black dots).

x3
+=




x3, x ≥ 0
0, otherwise

(9)

and where h1(θ) = 1
2 |cosθ | and h2(θ) = 1

2 |sinθ |. Note that
g(θ,s) reduces to b1(s) when θ is a multiple of π/2.

The bilinear method may be best implemented using a loop
over k and l before u for each λ. An important computational
burden lies in the computation of r(θ,s), but this burden
can be largely decreased using interpolation with a look-up
table. However, such a table was not used, as our primary
goal was to assess the best possible performance with the
bilinear method. Note also that implementation using the
approximation suggested in (Ref. 66, Section 7.4) may be
fast using GPU features.

2.E. Comparative discussion

All three methods may be classified as linear interpolation
methods. However, the manner in which the linear interpola-
tion is applied is fundamentally different from one method to
the other, which can impact image quality and computational
cost in iterative reconstruction.

A first fundamental difference is about the utilization of
pixel values. Figure 6 (top) illustrates a situation where the
pixel size is small relative to the separation between the
rays. Such a situation yields imbalances in Joseph’s method
in the sense that some pixel values appear under-utilized in
comparison with others. In the illustration, it can be seen that
the interpolation between pixels b and c is not required in
this particular view. If ∆ were much smaller or if the rays
were more separated, it could even be that some pixels would
play no role in modeling the measurements in this view. This
observation may be seen as an undesirable feature of Joseph’s
method. Given its definition, the bilinear method exhibits the
same feature, albeit not with the same importance for a given
pixel size, since the size of the pixel in both x and y matters
in that method. On the other hand, the distance-driven method
is not similarly affected.

A second fundamental difference is in the number of pixels
involved in the interpolation procedure. Unlike with the other
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F. 6. Geometrical features affecting the forward projection model. (top)
The pixels may be under-utilized with Joseph’s method; for example, in
this view, no interpolation is required between pixels b and c. (bottom)
The interpolation lengths can become quite large with the distance-driven
approach; for example, in this view, q2−q1 is much larger for the negative
values of u than for the positive ones.

two methods, this number can vary a lot in the distance-driven
method. Figure 6 (bottom) illustrates a high magnification
geometry with λ close to π/4. It can then be seen that the
interpolation length, q2− q1, can become quite large. Such
imbalances may negatively impact the computational effort
as well as the image quality. Additionally, there is also a
significant difference in the number of pixels involved between
Joseph’s method and the bilinear method, as illustrated in
Fig. 5 (right).

A third fundamental difference is in the potential accuracy
of the interpolation for the views where |tanλ | is close to 1.
The concept of summing in x or y instead of along the ray
appears suboptimal in these views. Because they sum in x or
y , Joseph’s method and the distance-driven approach could be
less accurate than the bilinear method, which sums along the
ray. Note, however, that by allowing the summation direction
to change from ray to ray within a view, Joseph’s method
may be less exposed to this issue than the distance-driven
approach.

3. EXPERIMENTAL COMPARISON SETUP

This section presents the choices made for the comparison
of the forward projection models, which include the image
formation process, data acquisition geometries, image param-
eters, phantom selection, and data simulation.

3.A. Image formation process

Let c be the vector of unknown image values, which were
called f (xk,yl) in Sec. 2, let g be the vector grouping the CT
measurements, and let A be the matrix that links c to the CT
measurements. Now, let {σm,um,vm} represent the singular
value decomposition of A. Given that A is a discrete model
of the Radon transform, the singular vectors are known to
be progressively associated with finer details as m increases.
Moreover, it is known that the singular values rapidly decrease
with m, so that fine details recovery is more sensitive to noise.
Different forward projection models yield singular vectors
with different features and as well as different stability for the
inclusion of these features in the reconstruction.

We compare the forward projection models using a
summary of information included in the singular value decom-
position of A. This summary is defined as a sequence of images
c(n) that gradually include more and more information from
the singular value decomposition of A for a given data set g,

c(n)=

m

f (n)(σm) (u
T
mg)
σm

vm, (10)

where f (n)(σm) converges toward unity with n. Increasing
n amounts to trying to sharpen the reconstruction, c(n), by
increasing the weight given to singular vectors that include
fine details. Depending on the forward projection model,
some of these details may however not be desirable, yielding
artifacts similar to discretization errors. Also, they may be too
sensitive to noise for reliable usage. When fn(σm) = 1, c(n)
becomes the result of applying the Moore–Penrose inverse of
A to g, which, in tomography, is highly sensitive to noise in g.

To circumvent the computationally-demanding issue of
determining the singular value decomposition of A, the
sequence of images c(n) was created indirectly, using Landwe-
ber iterations with c(0) chosen as the zero vector

c(n+1)= c(n)+ β · AT
(
g− Ac(n)

)
. (11)

These iterations are equivalent to using Eq. (10) with

f (n)(σm)= 1− (1− βσ2
m)n+1 . (12)

Parameter β was chosen as 0.9 times 2/σ2
max, whereσmax is the

maximum singular value of A, estimated using five iterations
of the power method.71

Most of our comparison results are reported as a function
of a figure-of-merit for resolution that serves as a surrogate
for n. To achieve this goal, the result from every fifth iteration
was stored, starting from iteration 40 and stopping after 1000
iterations. The first 40 iterations were discarded because the
resolution was too low for these images to be of interest. At
n= 40, f (n)(σm) is essentially equal to unity for σm > 0.3σmax
and smoothly decreases toward zero for the other singular
values. As n increases beyond n = 40, f (n)(σm) smoothly
converges toward unity for each index m.

3.B. Geometrical settings

Our comparative study includes 16 different geomet-
rical (parametric) settings that are the representative of
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contemporary CT scans. We differentiate between moderate
pixel size (MPS) and small pixel size (SPS), low and high
magnification, full-scan and short-scan, and FFS off and FFS
on. These aspects allow us to probe various features of the
forward projection models. For example, as discussed earlier,
the pixel size is an important factor for both Joseph’s and
the bilinear method, and high magnification may impact the
distance-driven method more than the other two methods.
Also, the data redundancies that are present within a full-scan
may yield artifact/noise cancellations that are not feasible
with a short-scan, and FFS off or on further affects data
sampling.

The comparison is divided into two subsets based on the
pixel size. The same label concept is used for the moderate
and the small pixel size as shown in Fig. 7. Thus, each
geometrical setting has an associated number together with an
abbreviation denoting the pixel size. For example, G1-MPS
denotes geometrical setting 1 with moderate pixel size, where
geometrical setting G1 is defined using low magnification,
full-scan mode and FFS off.

All data simulation and image reconstruction parameters
are summarized in Table I. The grid of image pixels was
always centered on the origin and the computations were only
carried out over the pixels that were within the circle of radius
rFOV = 13 cm. To better appreciate our selection for ∆, note
that modern CT scanners typically offer 512×512 images with
pixels distributed over a user-selected region, the maximum
length of which is 50 cm. At maximum length, the pixel size
is about 0.1 cm, whereas a pixel size of 0.075 cm would
correspond to selecting a region of 38 cm and a pixel size

F. 7. Label concept for the 16 geometrical settings.

T I. Data simulation and image reconstruction parameters. MPS, SPS,
and FFS stand for the moderate pixel size, small pixel size, and flying focal
spot, respectively. Poisson noise is added to the data assuming that Nin
photons are emitted toward each detector pixel; Nin is adjusted with the
number of projections to have the same total exposure in all geometries.

Image size 351×351 (MPS)
701×701 (SPS)

∆ 0.075 cm (MPS)
0.0375 cm (SPS)

R0 57 cm (low magnification)
36 cm (high magnification)

Detector width at isocenter 0.075 cm
Detector height at isocenter 0.075 cm
Number of detector pixels 380
Detector pixel offset 1/4 (FFS off)

1/8 (FFS on)
Number of projections (Nλ) 1200 (full scan, FFS off)

2400 (full scan, FFS on)
800 (short scan, FFS off)
1600 (short scan, FFS on)

Nin (1200/Nλ)×60,000

of 0.0375 cm to selecting a region of 19 cm. The size of
0.075 cm is a representative of abdominal and chest scans of
an average-size patient, whereas the smaller size of 0.0375 cm
is a representative of head or heart-focused scans. Parameters
∆u and D were chosen so that the same resolution is achieved
at the isocenter in all geometries. The low magnification
represents a classical head/body CT scanner, whereas the high
magnification represents a head-dedicated CT scanner.72 For
the full scan, [λs,λe)= [0,2π) was used. For the short scan, the
start angle was λs = 0 and the end angle was λe = 4π/3. Thus,
the number of projections on a short-scan was 2/3 of that on
a full-scan. When using the flying focal spot, the number of
projections was doubled, as in the scanner.

3.C. Phantom selection and data simulation

Our evaluations were carried out using the FORBILD head
phantom,73 which has been accepted as a standard in the CT
community due to its simple yet challenging definition. Note
that this phantom is 3D. In this work, we only analyzed the
central axial slice through it, a description of which can be
found in Ref. 74.

Data simulation was carried out in 3D, as a CT scan
with one detector row of finite nonzero thickness, using
a proprietary software. The simulation model included a
subsampling of the x-ray tube focal spot, a subsampling of the
detector element, and a subsampling of each source position.
These settings allowed us to model the shift-variant effect of
the x-ray tube anode angle on resolution, to model the blurring
that results from continuous x-ray emission, and to model the
blurring that results from the finite size of the focal spot and
detector elements. More specifically, a 3×3 subsampling was
used for the focal spot as well as for each detector element,
and each view was simulated using 5 subsource positions. All
subsampling positions were uniformly distributed. In total,
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each CT measurement was thus simulated as an average of 405
line integrals. The computation of each line integral was based
on analytical expressions, and the average was performed
before applying the logarithm. For further information and
a visual description of our data simulation model, see Ref. 75.
The x-ray tube focal spot size was 0.12×0.09 cm, and the
anode angle was 7◦. For scans with FFS on, the shift was
|δ(λ)| = 0.0415 cm for both magnifications, as suggested
in Ref. 76.

All evaluations with noise involved 50 noise realizations for
each geometrical setting. Poisson noise was used with a fixed
number of incoming photons, Nin, for each ray; see Table I.
This number was changed with the number of projections to
ensure that the total exposure was always the same. Recall that
the attenuation values in the FORBILD phantom are given as
a fraction of the attenuation value of water. To work with
physical units, all attenuation values in the phantom were
scaled with a factor of 0.183/cm, which represents the linear
attenuation coefficient of water at 80 keV. Note that Nin was
the same for both low and high magnification, and noise
simulation did not include a compensating bowtie filter nor
tube current modulation.

4. QUANTITATIVE COMPARISON: METRICS

The impact of the forward projection models was quantita-
tively evaluated using a number of metrics that are described in
this section. Basic metrics covering resolution, computational
cost, bias, and noise propagation were used as well as metrics
related to the task-based assessment.

4.A. Spatial resolution evaluation

Spatial resolution was evaluated using the modulation
transfer function (MTF), relying on the fact that the iterations
c(n) linearly depend on the CT data, g. This function was
obtained using a phantom that consists only of the large
low contrast ellipse within the FORBILD head phantom; see
Fig. 10 (left). For any reconstruction of this phantom, an edge
profile that gives the reconstructed values as a function of the
distance from the ellipse was computed. Then, the MTF was
obtained as the Fourier transform of the differentiated edge
profile. To apply this last step, the numerous samples forming
the edge profile were first grouped together in bins of width
∆/4 that were sampled with a step of ∆/4. For display and
analysis, all MTF curves were normalized so that the value
at zero frequency was equal to one. Since the reconstruction
method investigated in this paper is linear, the above procedure
is suitable to evaluate the spatial resolution achieved within
the neighborhood of the large low-contrast ellipse.

In each geometry, there were slight variations in resolution
from one forward projection model to another. These effects
are illustrated in Figs. 8 and 9. The first figure shows that the
MTF curve at a fixed number of iterations is not always the
same for each forward projection model. The second figure
shows the frequency at which the MTF reaches a value of 0.5,
which is called ν0.5, as a function of the number of iterations.

F. 8. MTF curve for the geometrical setting G1-SPS after 201 Landweber
iterations for all three forward projection models.

Both figures are for Geometry G1-SPS. To account for these
differences in resolution, all figures of merit are displayed
as a function of ν0.5. Note that the differences were more
pronounced in the SPS geometries than the MPS ones.

4.B. Computational cost

Computational cost evaluation was limited to the applica-
tion of the matrix A that represents the forward projection
model. That is, the additional effort needed to create the
elements of this matrix was not included in our evaluations.
This effort strongly depends on implementation optimization,
which was out of the scope of this work. In our nonoptimized
implementation, the bilinear method always required much
more effort for the computation of the elements of A, primarily
because no look-up table was used. Also, computing the
elements of A took more time with the distance-driven
method than with Joseph’s method, particularly for the SPS
geometries.

Our metric for computational cost as a function of ν0.5
was the number of iterations needed to reach this MTF
frequency times a factor adjusting for differences in the
number of nonzero elements in A, which reflects the difference
in computational cost associated with the application of A. Let

F. 9. Frequency at which the MTF reaches a value of 0.5, ν0.5, as a
function of the iteration number in the geometrical setting G1-SPS for all
three forward projection models.
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F. 10. (left) Phantom used for the computation of the MTF curves. (middle)
Mask used for the evaluation of bias in noise-free reconstructions. (right)
Region used for the evaluation of the mean standard deviation and the
correlation coefficient in reconstructions from noisy data; this region is the
large rectangle with white borders.

NJ, ND, and NB be this number for the Joseph, distance-driven,
and bilinear methods, respectively. The adjustment factor was
equal to one for Joseph’s method, to ND/NJ for the distance-
driven approach, and to NB/NJ for the bilinear method.
The average values for these factors were ND/NJ= 1.05 and
NB/NJ = 1.52 in the MPS geometries and ND/NJ = 1.60 and
NB/NJ= 1.53 in the SPS geometries.

4.C. Bias evaluation

Bias was evaluated as a mean reconstruction error over
pixels that are away from edges and share a common
attenuation value in the ground truth image. This set of pixels
was identified using a mask that is shown in Fig. 10 (middle).
To create this mask, the ground truth image was convolved
with a square box function. Then, the convolved image was
compared with the original phantom and the mask was defined
as the set of pixels that showed the same attenuation value of
50 HU in both images. The width of the box function was
equal to 9 pixels. This width was carefully selected so as to
avoid interference with resolution effects.

The reconstruction error for each pixel was simply defined
as the difference between the reconstructed value and the true
attenuation value. The mean of the square of these differences
was evaluated over all pixels within the mask, and the square
root of this mean was used as the definition for the bias. Later
on, we also refer to the bias as the RMSE (root-mean-squared-
error).

4.D. Noise evaluation

Due to statistical noise in the data, any reconstructed
image needs to be seen as one realization of a multivariate
random variable. Given that the reconstruction algorithm
used here is linear and that a large number of photons were
used in our data simulation, this variable was essentially
normally distributed. Thus, effects due to noise could be
quantified by analyzing the standard deviation in the pixel
value as well as the correlations between pixels. Because
50 noise realizations is not a number large enough to avoid
significant statistical errors in the evaluation of pixel standard
deviation and correlation between pixels, mean values were
used as final metrics. These mean values are described
below.

4.D.1. Mean standard deviation

First, the sample variance formula was invoked with the
50 noise realizations to estimate the pixel variance for each
pixel within the rectangular region shown in Fig. 10 (right).
Next, all obtained values were averaged together, and a
square root was taken. The outcome of this square root was
defined as the mean standard deviation. The rectangular region
was of size 125× 112 for the MPS geometries and of size
250× 224 for the SPS geometries. In both cases, the box
was centered on location (x,y) = (−0,8625,−2.55) cm. The
statistical accuracy of our mean standard deviation was very
high. For example, in geometry G1, the utilization of another
set of 50 noise realizations yields less than 1% difference in
the mean standard deviation.

4.D.2. Mean correlation coefficient

By definition, the correlation coefficient is a quantity
that involves two pixels. Our evaluations were focused on
correlations between pixels that are adjacent to each other,
either in x, in y , or at 45◦. The procedure to obtain a
mean correlation coefficient in x was as follows. First, we
identified all pairs of pixels that are adjacent to each other
in x within the rectangular region shown in Fig. 10 (right),
which is the same region as that used for the evaluation
of the mean standard deviation. Then, the formula for the
sample correlation coefficient was invoked with the 50 noise
realizations to obtain an estimate of the correlation coefficient
for each of these pairs of pixels. Finally, all obtained values
were averaged together. The procedure to obtain a mean
correlation coefficient in y or at 45◦ was the same as that
used for the mean correlation coefficient in x, except for the
identification of pairs of pixels. The statistical accuracy of our
mean correlation coefficients was found to be similar to that
of our mean standard deviation.

4.E. Task-based assessment

Common tasks include classification, detection, and esti-
mation.77 We considered an estimation task which was defined
as the evaluation of the background value at various locations
within the phantom. The estimator for the background value
was the mean pixel value within a region-of-interest (ROI). A
total of 11 locations were chosen for the ROI. These locations
are shown in Fig. 11 with individual numerical labels running
from 1 to 11. Table II gives the center position, (xc,yc), for
each ROI. The size of the ROI was 11×11 pixels in the MPS
case and 21×21 pixels in the SPS case.

The mean pixel value, called m, was evaluated at a same
resolution level for each forward projection method, namely
ν0.5 = 4.75/cm. In addition to evaluating the background
value, we also estimated the square root of the geometry-
averaged variance of m. This quantity, called σ, assesses
how m varies with the quantum noise, in average over the
geometries. An insightful expression for σ is

σ =
√

eT C e, (13)
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F. 11. Arrangement and labeling of 11 ROIs used for the estimation task,
which consists in evaluating the background value at various locations in the
phantom.

where C is the covariance matrix for the pixels within the
ROI, as obtained after averaging over the geometries, and e
is a vector with entries all equal to 1/Npix with Npix being
the number of pixels in the ROI. Unlike m, this quantity is
independent of the bias. It allows singling out differences in
the noise behavior. To get an estimate of σ, we replaced C by
the average of the sample covariance matrices available for m
in each geometry; these matrices were obtained from the 50
noise realizations. The outcome is the same as computing the
square root of the geometry-averaged sample variance of m.

5. QUANTITATIVE COMPARISON: RESULTS

By design, our analysis generated a large amount of data,
including 3×8×2 curves for each basic metric (three forward
projection models, eight geometries, and two pixel sizes).
Each curve showed the metric behavior as a function of ν0.5,
and there were six basic metrics (computational cost, bias,
mean pixel standard deviation, and mean pixel correlation
coefficient in x, in y , and at 45◦). These results, as well as
those obtained for the task-based assessment, are presented
hereafter in a condensed format, using the abbreviations “J,”
“D,” and “B” to refer to Joseph’s method, the distance-
driven method, and the bilinear method, respectively, and also
using the abbreviation MPS or SPS to clarify which pixel
size a result corresponds to. Beforehand, some examples of
reconstructions are provided so that the results can be partly
linked with a visual impression.

5.A. Visual appearance of reconstructions

Figures 12 and 13 show reconstructions obtained in
geometry G1-MPS and G1-SPS, respectively. Each figure
includes noise-free and noisy reconstructions. Note that the
grayscale window is more compressed for the noise-free

F. 12. (left) Noise-free and noisy reconstructions obtained in geometry G1-
MPS after 251 Landweber iterations: (first column) Joseph’s method, (middle
column) the distance-driven method, (third column) the bilinear method.
Noiseless images: c/w= 50/40 HU; noisy images: c/w= 50/200 HU.

reconstructions to emphasize the discretization errors. Also,
only the upper portion (region y > 0) of the reconstructions
is shown, as the other portion would not convey more
information.

In G1-MPS, the noiseless reconstructions show that, unlike
method B, methods J and D both yield discretization errors
around the ±45◦directions. However, the magnitude of all
discretization errors is fairly small. In the presence of noise,
the discretization errors are difficult to see and so are other
possible differences between the three forward projection
models.

In G1-SPS, methods J and B both yield more discretization
errors than method D, but the magnitude of the discretization
errors remain fairly small, so that it is still difficult to
distinguish these differences in the presence of noise. Unlike
in G1-MPS though, method D visibly yields a different noise
structure in comparison with the other two methods.

5.B. Display concept for the basic metrics

Results corresponding to different metrics or different
pixel sizes are shown in separate figures. To minimize the
number of figures, the results obtained for all three forward
projection models are always incorporated together in each
figure. Three different tones of gray are used for this purpose:
light gray for method J, medium gray for method D, and
dark gray for method B. Moreover, the dependence over the
8 geometries is summarized by its first two moments when
the variations according to ν0.5 are more prominent, which
is the case for the computational cost and the noise metrics.
Similarly, the dependence over ν0.5 is summarized by its first
two moments when the variations according to the geometries
are more prominent which is the case for the bias. Hence,
for the computational cost and the noise metrics, the first
moment is the mean value over the geometries as a function
of ν0.5, which is provided together with standard deviation

T II. Position (xc, yc) for the center of each ROI (in cm).

ROI 1 2 3 4 5 6 7 8 9 10 11

xc −3.4125 3.4125 0 −7.4625 0 7.4625 −7.4625 0 7.4625 −3.4125 3.4125
yc 8.4375 8.4375 4.6875 2.6625 2.6625 2.6625 −2.6625 −2.6625 −2.6625 −8.4375 −8.4375
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F. 13. Same reconstructions and arrangement as in Fig. 12 but for geometry
G1-SPS.

bars (second moment) at occasional values of ν0.5 conveying
the dependence over the geometries. For the moderate pixel
size, the frequency range is ν0.5 ∈ [1.55,6.29]/cm and the
average is always over all eight geometries. For the small
pixel size, two frequency ranges, ν0.5 ∈ [1.58,5.43]/cm and
ν0.5 ∈ (5.43,6.79]/cm, are involved because the maximum
frequency reached in G3-SPS and G7-SPS was lower than
that reached in the other SPS cases. For the bias metric, the
first moment is the mean value over ν0.5 ∈ [1.58,5.43]/cm,
which is provided in the form of a bar plot with error bars
(second moment) that convey the dependence over ν0.5.

5.C. Results for the basic metrics

Figure 14 compares the three forward projection models in
terms of computational effort. As can be seen, method J always

F. 14. Computational effort as a function of ν0.5. Only the first summary
plot is shown. (top) MPS. (bottom) SPS.

F. 15. Frequency-averaged RMSE for each geometry for MPS (top) and
SPS (bottom).

required less effort. The increase in effort for method B varied
between 45% and 70%. The increase in effort for method D
was strongly dependent on the pixel size: it only was around
4% for MPS, but varied between 51% and 73% for SPS.

Figure 15 compares the methods in terms of bias. For both
MPS and SPS, the frequency-averaged RMSE was clearly
dependent on the geometry. The strongest effect was observed
for geometries 3 and 7, namely the short-scans without FFS.
These geometries are associated with fewer views which
resulted in a higher bias. For MPS, the bias in geometry 3 and
7 was between 6.8 and 8.9 HU; for the other geometries the
bias was always below 4.2 HU. Methods J and B consistently
yield the highest and the lowest bias but no differences higher
than 1.4 HU were observed. For SPS, the lower number of
views in geometries 3 and 7 affected methods J and B much
more then method D, with values as high as 38.7 HU for
method J and 34.1 HU for method B, whereas the bias for
method D was near 11.7 HU. In the other geometries, the bias
was always below 8.5 HU. Also, method D consistently yields
the lowest bias but the difference was always below 4.0 HU
relative to method J and below 1.7 HU relative to method B.
Last, the bias plots also show that the dependence on ν0.5 was
fairly similar from one geometry to another; in average over
the geometries, the standard deviation for the dependence on
ν0.5 was below 1.1 HU for MPS and 2.8 HU for SPS.

Figure 16 compares the methods in terms of noise
performance for MPS and SPS, respectively. Note that results
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F. 16. Geometry-averaged metrics as a function of ν0.5 for (top plots) MPS and (bottom plots) SPS. From left to right: mean standard deviation, correlation
coefficient in y, correlation coefficient at 45◦.

for the correlation coefficient in x are not shown because
they did not convey additional information. For MPS, the
dependence of noise metrics on frequency and geometry was
very similar for all methods. Differences of about 2 HU were
observed in the mean standard deviation, with methods B and
J always performing best and worst, respectively. Also, there
were large differences in the correlation coefficient: method J
yields less correlation between the pixel values than methods
D and B, with differences as high as 0.05 and 0.1 compared
to methods D and B, respectively. For SPS, the dependence of
noise metrics on frequency and geometry was also observed
to be very similar for all methods. However, differences as
large as 40 HU were observed in the mean standard deviation,
and methods D and J became the methods that always perform
best and worst, respectively. Moreover, the differences in the
correlation coefficient dramatically increased. A difference as
large as 0.3 was observed between methods J and D. Also,
unlike in MPS, method B created correlation levels that are
much closer to those of method J than method D. Finally, the
plots also show that, in the MPS case, the dependence on the
geometry was similar for all methods and this dependence
was relatively small: the dependence over the geometries was
around 6% for the mean standard deviation, and the standard
deviation over the geometries was never larger than 0.035 for
the mean correlation coefficients. In the SPS case, the plots
show a larger dependence on the geometry for methods J
and B than for method D; the dependence however remains
fairly small for all three methods: for the mean standard
deviation, the dependence over the geometries was around
8% for method D and 1% to 2% higher for methods J and B;
for the mean correlation coefficients, the standard deviation

over the geometries was always below 0.035 for method D
and 0.06 for methods B and J.

5.D. Results for the estimation task

We only show the results obtained for all eight geometries
in the MPS case. For the SPS case, we excluded the results
obtained for geometries G3 and G7 because methods B and J
yield a much larger bias than method D in these geometries
(see Fig. 15). That is, in geometries G3 and G7, methods J
and B should not be seen as competitive relative to method D.
Also, including G3 and G7 would mask the SPS results for
the other geometries.

The results obtained for m are compared using Bland–
Altman plots. These plots include 4400 and 3300 points
for the MPS and SPS cases, respectively, with each point
corresponding to a different noise realization (of which there
are 50), a different geometry, and a different ROI location.
Figure 17 shows the Bland–Altman plots78 in the MPS
case (upper row) as well as in the SPS case (lower row).
In each case, there are three plots: the first one compares
method J to method D, the second one is for methods J
and B, and the last one is for methods D and B. In each
plot, three dashed lines highlight the mean value and the
addition/subtraction of 1.96 times the standard deviation to the
mean, as is commonly used. The Bland–Altman plots show
that all forward projection methods perform very similarly
for the selected estimation task. In the MPS case, the bias
(mean difference) is negligible (<0.02 HU), and the difference
between the estimated background value from one method to
another is below 0.2 HU in 95% of scenarios. In the SPS
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F. 17. Bland–Altman plots in the MPS case (upper row) and the SPS case (lower row). From left to right, the plots for methods J and D, methods J and B, and
methods B and D. Each point in any of these plots corresponds to a different noise realization, a different geometry, and a different ROI location.

case, the bias is also negligible, and the difference between
the estimated background value is still small although slightly
larger; specifically it is below 0.7 HU in 95% of scenarios.

Tables III and IV compare the values obtained for σJ,
σJ–σD, and σJ–σB at each ROI location, for the MPS and SPS
cases, respectively. These values are given with their standard
deviation and also the p-value for hypothesis testing on the
differences of means. The standard deviations and the p-values
were obtained using properties of the Wishart distribution79–81

together with application of the delta method and estimate
plugins, all under the assumption that the pixels within the
ROI follow a multivariate Gaussian distribution.82

T III. Estimated values of σJ, σJ–σD, and σJ–σB for each ROI in the
MPS case, with standard deviation given between parentheses. See Eq. (13)
for a definition of these quantities. The values are supplied with their standard
deviation as well as the p-values for hypothesis testing on the difference of
means. The statistically significant differences (p-value below the 0.01) are
indicated with an asterisk.

MPS p-value

ROI σJ σJ–σD σJ–σB σJ–σD σJ–σB

1 2.51 (0.09) −0.012 (0.005) −0.015 (0.003) 0.0105 0.0000*
2 2.37 (0.09) −0.015 (0.005) −0.011 (0.002) 0.0016* 0.0000*
3 2.46 (0.09) −0.010 (0.003) −0.012 (0.003) 0.0002* 0.0002*
4 2.16 (0.08) −0.006 (0.004) −0.008 (0.003) 0.1493 0.0014*
5 2.65 (0.10) −0.012 (0.003) −0.018 (0.004) 0.0001* 0.0000*
6 2.18 (0.08) −0.016 (0.004) −0.020 (0.003) 0.0002* 0.0000*
7 2.06 (0.07) −0.011 (0.004) −0.008 (0.003) 0.0054* 0.0053*
8 2.78 (0.10) −0.008 (0.003) −0.011 (0.003) 0.0096* 0.0009*
9 2.13 (0.08) −0.005 (0.004) −0.008 (0.002) 0.1703 0.0003*

10 2.24 (0.08) −0.004 (0.005) −0.008 (0.003) 0.3775 0.0012*
11 2.43 (0.09) −0.017 (0.005) −0.023 (0.003) 0.0005* 0.0000*

Table III shows that, in the MPS case, all differences
in the value of σ are in favor of method J. Most of these
differences are statistically significant, but they are relatively
small (<1%). On the other hand, as can be seen in Table IV,
the differences are not anymore in favor of method J in the
SPS case. However they remain fairly small, and most of
them are not statistically significant. Note that methods J and
B produced results that are systematically closer to each other
than in the MPS case. Note also that the largest differences are
observed at positions 6, 9, and 11: σD is, respectively, 2.0%,
1.6%, and 2.6% lower than σJ at these locations, whereas the
differences at other locations are below (or close to) 1%.

5.E. Summary discussion

Our results showed that the forward projection methods
definitely yield differences in image characteristics as well as

T IV. Same as in Table III but for the SPS case.

SPS p-value

ROI σJ σJ–σD σJ–σB σJ–σD σJ–σB

1 2.55 (0.11) 0.026 (0.013) 0.004 (0.002) 0.0500 0.0948
2 2.36 (0.10) −0.009 (0.014) 0.004 (0.002) 0.5166 0.0608
3 2.45 (0.10) 0.022 (0.015) 0.001 (0.003) 0.1378 0.7448
4 2.25 (0.10) 0.019 (0.013) 0.000 (0.002) 0.1371 0.9376
5 2.83 (0.12) 0.022 (0.014) 0.004 (0.003) 0.1350 0.2637
6 2.31 (0.10) 0.047 (0.016) −0.002 (0.002) 0.0031* 0.3320
7 2.02 (0.08) 0.022 (0.012) −0.002 (0.002) 0.0693 0.4907
8 2.91 (0.12) 0.012 (0.015) 0.003 (0.003) 0.4208 0.3807
9 2.15 (0.09) 0.035 (0.014) 0.004 (0.002) 0.0147 0.1071

10 2.31 (0.10) 0.020 (0.017) 0.002 (0.003) 0.2479 0.5526
11 2.60 (0.11) 0.067 (0.019) 0.009 (0.003) 0.0004* 0.0009*
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in the size of the system matrix, which we use as a surrogate
for computational effort, as discussed earlier in Sec. 4.B. The
differences were strongly dependent on the pixel size and the
number of measurements, whereas the magnification factor
and the resolution level had much less effect on the observed
differences.

In terms of RMSE, the ranking of the methods depends
on the pixel size. In the MPS case, method B always yields
better results than methods J and D. This observation may
be attributed to the fact that method B does not simplify
integration to a preferred direction, which allows avoiding
artifacts around the ± 45◦directions. However, the advantage
provided by method B was essentially marginal (<1.5 HU)
in all cases. Moreover, these marginal improvements are
associated with a large increase (about 50%) in computational
effort (i.e., system matrix size). Also, between methods D and
J, method D always yields the lowest RMSE value, but again
the differences were marginal and the gain comes with a slight
increase (about 5%) in computational effort. On the other
hand, in the SPS case, method D appears more robust than
methods B and J, but the RMSE and differences in RMSE were
low in many settings, so that the RMSE advantage of method
D appears to be relevant only in particular cases. In our study,
these cases were G3-SPS and G7-SPS, which are the only two
cases for which the reconstruction problem was underdeter-
mined. Unfortunately, this advantage of method D comes with
a major increase in computational effort (about 50%). Between
methods B and J, method B yields some improvements in
RMSE, but these are not sufficient for method B to compete
with method D. Altogether, balancing computational effort
with RMSE, we feel that method J offers the best trade-off,
except in undersampled geometries where method D becomes
preferable despite the increase in computational effort.

In terms of noise, basic metrics did not allow singling out
a preferred method. The pixel standard deviation was clearly
always larger for method J, but this effect was systematically
accompanied by lower correlations between the pixels. Such
differences imply that the task-based assessment of image
quality is required to rank the methods. For the estimation
task that we chose, we have observed that the differences in
standard deviation and correlation remarkably balance out,
such that all methods perform very similarly, as long as the
data sampling is satisfactory to avoid major differences in
RMSE. That is, in G3 and G7, method D remains preferable,
whereas method J is preferred in all other settings.

6. INFLUENCE OF STATISTICAL WEIGHTS
AND PENALTY TERM

An important question related to the comparative analysis
presented in the previous chapters is whether such an
analysis is relevant for modern iterative CT reconstruction
algorithms, which typically include statistical weights as well
as constraints on the image pixels. In the Introduction, we have
argued that a primary goal should be to first understand what
the model has to offer on its own and that reconstructions
with statistical weights and a penalty term may then be

easier to understand in a second stage of investigations. To
support our viewpoint, we have performed reconstruction
using such features and compared the results in terms of
geometrical effects. This additional study presented hereafter
was restricted to two geometries, G1 and G3, both investigated
using the MPS as well as the SPS setting.

Image formation for the additional study was the result of
minimizing the following objective function:

Ψ(c)= ∥W (Ac−g)∥2+ βΦ(c), (14)

where the first term evaluates data fidelity and the second
term penalizes differences between pixel values. Parameter β
controls the balance between the two terms. Matrix W in the
data fidelity term is a diagonal matrix that allows weighting
each individual measurement. The penalty term is chosen as

Φ(c)= 1
2


j


k ∈Ω j

d−1
j,k φ(cj−ck), (15)

where cj and ck represent different components of c, Ω j

identifies components ck of c that correspond to physical
neighbors of cj, d j,k is the distance between the neighbors
in pixel units, and φ(t) is a potential function. We only
used the eight immediate neighbors. Also, the minimum
of the objective function was evaluated using the iterative
coordinate descent method,12 with the iterations stopped once

F. 18. RMSE at a frequency ν0.5= 4.75/cm as obtained when using 3 dif-
ferent objective functions, referred to as PLS-QP, PWLS-QP, and PWLS-FP
(see the text for details). The bars above the LS label show the result obtained
with Landweber iterations; this result is supplied to facilitate comparison.
(top) MPS. (bottom) SPS.
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the maximum pixel update within the iteration (running
sequentially over all pixels) was smaller than 10−4/cm (i.e.,
about 0.5 HU).

The additional study was carried out for three different
objective functions referred to as “PLS-QP,” “PWLS-QP,” and
“PWLS-FP,” defined as follows:

• quadratic penalty, φ(t)= t2/2, with the same weight for
all measurements, i.e., using the identity matrix for
W and with β adjusted so that each model yields a
resolution of ν0.5= 4.75/cm;

• quadratic penalty, φ(t) = t2/2, with the measurements
weighted according to the fluence on the detector, i.e.,
using (up to a global scaling factor) the inverse square
root of the variance of the data as an expression for W and
with β adjusted so that each model yields a resolution
of ν0.5= 4.75/cm;

• edge-preserving penalty, φ(t)= |t |− δ log(1+ |t/δ|) with
δ = 50 HU, using the same weights for the measurements
and the same values of β as for the second objective
function.

Resolution was assessed as described in Sec. 4.A. Note that
W was kept unchanged while evaluating the resolution for the
second objective function. Note also that the elements of W
for the second and third objective functions were scaled so
that the elements of W for the central ray had a mean value of
one; this scaling enabled maintaining the same resolution at
high contrast for all three objective functions.

Figures 18 and 19 show the results we obtained for the
RMSE, the mean standard deviation, and the mean correlation
coefficient in y . The results are displayed using bar plots.
Solid bars are employed for geometry G1, whereas transparent
bars with dashed contour are employed for geometry G3. To
facilitate comparison with the results in the previous section,
we also added the bars for reconstruction using Landweber
iterations; these are associated with the label “LS.” Moreover,
Fig. 20 shows the Bland–Altman plots for the estimation task
in the SPS case; these plots include each 1100 points (50 noise
realizations, 2 geometries, and 11 locations). Other results,
such as the correlation coefficients in other directions, or the
Bland–Altman plots in the MPS case, are not given as they
did not convey any more information.

The results in Figs. 18 and 19 show that the objective
function has a global impact on the nominal values obtained
for each basic metric, whereas the trends across forward
projection models remain largely the same as before. For
example, in the SPS case, methods J and B still yields a higher
mean standard deviation and a lower correlation between
pixels than method D. Also, using G3 with SPS still yields a
lower RMSE with method D, although the gain is certainly
not as large anymore, and the three models still yield very
similar metric values in the MPS case. The following effects
of the penalty term were fairly predictable: (i) RMSE is
reduced in the most challenging case, namely G3-SPS, with
the biggest effect observed with the edge-preserving potential
and (ii) correlations between pixels are markedly increased for

F. 19. Mean standard deviation (top row) and correlation in y (bottom row) when using three different objective functions, referred to as PLS-QP, PWLS-QP,
and PWLS-FP (see the text for details). The bars above the LS label show the result obtained with Landweber iterations; this result is supplied to facilitate
comparison. (left column) MPS. (right column) SPS.
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F. 20. Bland–Altman plots for the estimation task for the 3 different objective functions, using the SPS setting: (top row) PLS-QP; (middle row) PWLS-QP;
(bottom row) PWLS-FP. Each plot includes 1100 points (2 geometries, 50 noise realization, 11 locations). Each row shows, from left to right, the plots for
methods J and D, methods J and B, and methods B and D.

methods J and B in the SPS case, which previously showed low
binding between the pixel values. These two effects are such
that the differences between the forward projection models
are strongly reduced in absolute value. Also, as expected, the
statistical weights have a small negative impact on RMSE at
a fixed penalty term and have a global impact on correlations.
Perhaps less predictable is the change on correlations in y
that is observed from one objective function to another in the
MPS case, but this change is the same for all models, and thus
essentially caused by the statistical weights and the penalty
term altogether rather than by the forward projection model.

Likewise, the Bland–Altman plots in Fig. 20 show the
same effect as before. Specifically, the differences in the
mean standard deviation and correlations balance out so that
all models essentially yield the same performance for all
objective functions, with the added aspect that G3 can now be
safely used with all models.

7. SUMMARY AND CONCLUSIONS

We presented a comparison between three forward projec-
tion models that rely on linear interpolation for iterative

reconstruction in CT. Two of these models, namely Joseph’s
method and the distance-driven method, are commonly used,
the first one for its simplicity and the second one for its
ability to model the detector pixel size. The third method was
primarily selected because it does not require the selection of a
preferred Cartesian direction for the measurements, unlike the
other two methods. Our comparison included a large variety of
scanning geometries, and also a fair number of repeated scans
in each geometry, to assess dependence on photon statistics.
The geometries were the representative of contemporary CT
scans. Together with the usage of two different sizes for
the image pixel and a challenging phantom, they allowed a
thorough investigation of the behavior of the models.

We first presented a comparison of the models on their
own, using images created through Landweber iterations,
which enabled observing the effect of progressively injecting
components of the singular value decomposition of the
projection matrix in the reconstruction. The comparison
involved basic metrics covering computational effort, reso-
lution, discretization errors (RMSE), image pixel noise, and
statistical correlation between pixels and also involved an
estimation task. The metrics revealed fundamental differences
between the models. Two salient observations were as follows.
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First, the distance-driven method is more robust than
the other models when small pixels are used together with
geometries with a low number of measurements. However,
recall that, in such settings, the improvements provided by
the distance-driven method may come with a large increase in
computational effort; a change as large as 50% in the system
matrix size was observed in our study. Otherwise, we feel that
Joseph’s method offers an attractive balance between RMSE
and computational cost. When to use the distance-driven
method rather than Joseph’s method depends on scanned
anatomy as well as reconstruction and scanning parameters
and importance attributed to RMSE and computational cost.

Second, the three models yield a major difference in pixel
noise as well as in correlation between pixels, so that the
task-based assessment is required to rank the models. For
the estimation task we selected, we observed a remarkable
balancing of effects, so that all models performed similarly in
geometries with sufficient measurements.

It is not straightforward to state, from our results, that all
models perform similarly for detection or classification tasks
in geometries with sufficient measurements. Such a statement
is not even straightforward for a model observer because such
tasks tend to involve the covariance matrix of the image in
a nonlinear manner, whereas the estimation task involves it
linearly. We have performed further comparisons of the three
forward projection models using a classification task with a
model observer and also using a detection task with human
observers. Initial results regarding these comparisons were
reported at conferences.83,84 These results highlight a behavior
similar to that observed with the estimation task; they will be
presented in detail in a future publication.

The distance-driven method might have been expected to
perform better than the other models because it accounts for
the finite detector size. On this aspect, note that the data simu-
lation in this work did not only include detector blurring; it also
included blurring due to the finite focal spot size and due to
continuous x-ray emission. Moreover, all blurring effects were
modeled using a realistic nonlinear combination of line inte-
grals. Thus, from a physics modeling viewpoint, it is not clear
that the distance-driven method is necessarily a better model.

Furthermore, we also compared the performance of the
three forward projection models across geometries when
forming the image using three different penalized weighted
least-square objective functions. This additional study showed
that the previously observed trends could still be observed,
thereby providing strong support in favor of first analyzing
forward projection models on their own, as performed here
using Landweber iterations. Such a first analysis enables
a better understanding of results obtained with complex
objective functions. The additional study also showed that the
penalty term can dramatically compensate for a weak RMSE,
so that Joseph’s method appears strongly competitive in terms
of trade-off between the cost and image quality for all inves-
tigated geometries when an edge-preserving penalty is used.

The investigations we reported brought a lot of information
on the behavior of important forward projection models for
iterative reconstruction in diagnostic CT. However, the study
was somewhat limited in that it was conducted in the 2D fan-

beam geometry. We expect that most observations would hold
in 3D multislice CT, in the same way as observations related
to analytical reconstruction methods generally hold from 2D
to 3D. In particular, we expect the observations about pixel
noise and statistical correlations between pixels to hold. In
terms of bias, however, there are some uncertainties regarding
windmill artifacts,85 which could be more difficult to manage
for some models than others.
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